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The nonlinear instability of Hill’s vortex 

By C. POZRIKIDISt 
Department of Chemical Engineering, University of Illinois, 1209 W. California St., 

Box C-3, Urbana, IL 61801, USA 
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The nonlinear instability of Hill’s spherical vortex, subject to axisymmetric pertur- 
bations is considered. The problem is formulated as a nonlinear integrodifferential 
equation for the motion of the vortex boundary. This equation is solved employing 
a numerical procedure which involves a piecewise representation of the vortex 
contour with discrete elements. This formulation offers an efficient method for 
studying a variety of vortex flows in axisymmetric geometry. 

Our results indicate that if Hill’s vortex becomes a prolate spheroid, a certain 
amount of rotational fluid is detrained from the rear stagnation point of the vortex, 
leaving behind a reduced vortex of approximately spherical shape. The amount of 
detrained fluid is a function of the initial deformation. If the vortex becomes an oblate 
spheroid, irrotational fluid is entrained into the vortex from the rear stagnation point, 
reaches the front vortex boundary, and circulates along the vortex boundary in a 
spiral pattern. In  this fashion, the vortex reduces to a nearly steady vortex ring whose 
asymptotic structure is a function of the initial deformation. The structure of the 
asymptotic rings arising from oblate vortices is similar to that of steady rings 
described by Norbury (1973). The vortex speed is shown to tend to a constant value 
for prolate perturbations, and to fluctuate around a mean value for oblate 
perturbations. 

1. Introduction 
A variety of flows at high Reynolds number are characterized by axisymmetric 

regions of fluid with concentrated vorticity. Examples include jets, atmospheric 
plumes and wakes behind axisymmetric bodies. The dynamics of these flows involves 
complex phenomena, such as formation and interaction of axisymmetric coherent 
vortices, whose nature is not well understood. Most of the available information comes 
from experimental studies using velocity measurements and/or flow visualization, 
while only a few analytical studies have been attempted. 

A fundamental understanding of the above flows may be accomplished by 
analysing appropriate simple configurations, amenable to analytical or numerical 
methods (O’Brien 1961 ; Norbury 1973; Durst & Schonung 1982). Hill’s spherical 
vortex provides a convenient prototype for this purpose (Hill 1894). This vortex arises 
in applications including the motion of bubbles and droplets at high Reynolds number 
(Moore 1962; Harper & Moore 1968), the formation of laminar wakes behind spherical 
cap bubbles (Wegener 8z Parlange 1973) and the rise of thermals due to natural 
convection (Turner 1964). 

From a mathematical point of view, Hill’s vortex constitutes an extreme member 

t Present address : Research Laboratories, Eastman Kodak Company, Rochester, NY 14650, 
USA. 
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of a family of steady axisymmetric vortices translating in infinite irrotational fluid 
(Norbury 1973). As a common characteristic, the vorticity inside these vortices is a 
linear function of the distance from the axis of symmetry. The members of this family 
range from Hill’s vortex, to vortex rings of very small cross-section. 

Concentrating on Hill’s vortex, we study the evolution of axisymmetric perturba- 
tioiis that make the vortex a spheroid. These perturbations may be introduced by 
local straining flow fields ; examples include droplets falling in converging geometries 
or approaching solid boundaries. Moffatt & Moore ( 1978) studied the initial evolution 
for small deformations by linearizing the governing equations. They showed that 
when the vortex becomes an oblate spheroid, irrotational fluid is entrained into the 
vortex from the rear stagnation point, and the vortex reduces to a vortex ring. On 
the other hand, when the vortex becomes a prolate spheroid, rotational fluid is 
detrained from the vortex in the form of a spike, growing from the rear stagnation 
point; in physical terms, the disturbance is swept away by the outer flow, leaving 
behind a vortex of reduced radius. 

The restrictions of linear theory make the above results strictly valid only for 
disturbances of very small initial amplitude and for limited evolution time. It is of 
interest to extend the analysis to include finite initial amplitudes, and to investigate 
the asymptotic behaviour of the flow. Although a higher-order perturbation analysis 
is the natural extension of linear theory, it is not only limited for our purposes, but 
also very difficult to implement. Thus, we base our analysis on an efficient method 
for solving Euler’s equation, exploiting the particularly simple (linear) form of the 
vorticity distribution. We formulate the problem as a nonlinear integrodifferential 
equation for the vortex contour separating rotational from irrotational fluid. This 
equation is solved numerically, using a high-order discretization of the vortex 
contour. A similar method has been successfully employed for studying vorticity 
dynamics in two dimensions (Deem & Zabusky 1978; Pozrikidis & Higdon 1985). 

In  $2 we present the mathematical formulation and in $3  we develop the numerical 
procedure. Results for the nonlinear evolution of Hill’s vortex with axisymmetric 
spheroidal perturbations are presented and discussed in $54 and 5. 

2. Mathematical formulation 
We consider inviscid, axisymmetric flow without swirl, and refer to cylindrical polar 

coordinates (z, (r, v). For the kinematics of the flow field it is convenient to introduce 
the Stokes stream function, defined by the equation 

The vorticity w = V x u is directed in the azimuthal direction, w = ( O , O ,  w )  ; the 
vortex lines are concentric circles, centred on the axis of symmetry. In terms of the 
stream function, the vorticity may be written 

This is a Poisson equation which can be readily inverted to yield the stream function 
in terms of the vorticity distribution (Lamb 1932 art. 161), 

where r = Ixo-xI, and t,hE expresses an external irrotational flow. This equation 



Nonlinear instability of Hill's vortex 339 

views the flow as the result of the fundamental motions induced by the vorticity . The 
integration may be performed with respect to g~ to yield 

where 
1 2 

G = - 2n: (an,)$ [ (i - k) K ( k )  -,lc E ( k ) ] ,  

4aa, 
(z - xo)2+ (a + a , ) 2 '  

with k2 = 

G(x-x,, a, a,) is the stream function associated with a circular vortex ring of unit 
strength, and K and E are the complete elliptic integrals of the first and second kind. 
The integration in (4) is over any semi-infhite axial plane, bounded by the x-axis. 
Using (1) we may write 

U(Xo) = V,X -k dadx+UE(Xo), (6) s (?-) 
where uE = V, x ($E i / a ) ,  and V, denotes differentiation with respect to x,, a,. 

We assume now that the vorticity is concentrated within a closed axisymmetric 
region, and vanishes outside this region. Further, we assume that within the 
rotational region, the vorticity is independent of the axial position x, w = @(a). Under 
these conditions, we may use Stokes theorem to express the v component in (6) as 

where C ,  is the projection of the vortex contour on an axial plane, ?is the unit tangent 
to C,, and the integral is taken in the counterclockwise sense. 

One might attempt to write an analogous expression for the u component of the 
velocity, but this is prohibited by the non-symmetric functional dependence of 
the fundamental solution G on a and a,. To surmount this difficulty, we note 
that the flow outside the vortex is irrotational, and introduce the potential function 
$(x-x,, a, a,), defined by the equation 

u = V$. (8) 

By analogy with (4), we express $ as an integral over the vorticity distribution, 

F = -52/4n: is the velocity potential associated with a circular vortex ring of unit 
strength, proportional to the solid angle SZ subtended by the ring from the point 
(x,,ao) (Betchelor 1967 $2.6), and $E expresses an external irrotational flow. 
Differentiating (9) with respect to xo and applying Stokes theorem as in (7), we write 
u as a contour integral over C,  
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It is important to note that F is multiple valued and thus, application of (9) or (10) 
requires a branch cut at x = xo, a > a,. Once this branch cut is introduced the above 
equations are uniformly valid throughout the flow. 

Summarizing, we write the velocity in the integral form 

where P = (G, - F,  0) is specified by (5 )  and (9), and the flow field uE is irrotational. 
According to this equation, the velocity at any point in the flow is specified by the 
position and the vorticity of the fluid particles along the vortex contour. 

Equation (1 1) expresses a kinematic condition, valid at an initial instant where w 
is independent of x. To extend this equation a t  later times, we require that w remains 
independent of x during the motion. Thus, we consider the dynamic condition 
expressed by the vorticity transport equation. This equation for homogeneous or 
barotropic and incompressible fluids in axisymmetric flow takes the form 

"(2) = 0, 
Dt a 

where D/Dt indicates a material derivative. We observe that w = A a ,  where h is a 
constant, is a steady solution to this equation, implying that if the vorticity is a linear 
function of a a t  an initial instant, it will remain so throughout the evolution. The 
physical mechanism underlying this solution is the following ; when a material vortex 
ring is stretched so that  its radius increases by a certain factor, its vorticity increases 
by the same factor owing to vortex stretching. Examples of flows with linear vorticity 
distribution include the members of the family of steady vortices described by 
Norbury (1973). 

Substituting w = ha into (11)  and evaluating for fluid particles on the vortex 
contour yields a highly nonlinear integrodifferential equation for the trajectories of 
these particles x(a,  t )  . .  

at 

where a is a Langrangian variable, 0 < a < A .  This equation may be used for the 
efficient calculation of steady axisymmetric vortices, in a procedure similar to that 
used by Pierrehumbert & Widnall (1981), or Saffman & Szeto (1981) in two 
dimensions. More importantly for our purposes, this equation may also be used to 
study the evolution of unsteady vortices. 

3. Numerical procedure 
We implement our numerical procedure by identifying a collection of marker points 

on the vortex contour. The initial velocity at each point is calculated by interpolating 
for the position of the vortex contour as discussed below. The computation proceeds 
forward in time via a fourth-order Runge-Kutta procedure. 

A direct numerical evaluation of the contour integral for the u velocity component 
is prohibited by the singular behaviour of the kernel G. As x+xo and a+a,, k +  1 
and G + S  = a. In (4/(1 -k2):)/2n. To remove the singularity we write 

(Ga-Sc,)p?dl+h Sj*idl. J 



Nonlinear instability of Hill’s vortex 34 1 

The first integral is evaluated numerically using a Gauss-Legendre quadrature, as 
explained below. The second integral may be evaluated exactly over elementary 
segments such as straight lines or circular arcs. The choice of circular arcs passing 
through three successive points, yields higher accuracy without requiring a compli- 
cated implementation. 

For the evaluation of the u velocity component, we calculate the solid angle D in 
terms of complete elliptic integrals of the third kind 7c(rp/k2) ; these may be expressed 
in terms of complete and incomplete elliptic integrals of the first and second kind 
(Abramowitz & Stegun 1972 p. 589), which in turn may be efficiently computed using 
an iterative procedure (Davis 1960). Thus, 

Z - X 0  1 Zo-Z 

I z - x0 I = 2n--- [(C+ 1 ) n , ~ ( - n 1 / k 2 )  

- (C-  1) n27c(n2/k2)1, 

B ( (x0 - z ) ~  + (ao + ( ~ ) ~ ) i  

U 
C =  

2B 
n2 = ~ 

( l+B)’  

@O where, B = 
( (xo - Z ) Z  + U;)i ’ ( (Zo - x)2 + U;); ’ 

2B 
n, = ___ 

(1-B)’ 

The regular contour integrations of the first integral in (14) as well as the contour 
integral for the u velocity are performed over sets of circular arcs connecting adjacent 
trios of points, using a Gauss-Legendre quadrature. The number of nodes in the 
quadrature is evaluated separately for each arc by specifying a maximum integration 
step. 

After each timestep, the distribution of points is examined, and points are inserted 
or removed according to the criteria established by Pozrikidis & Higdon (1985). 
Briefly, the procedure includes insertion of points at regions of high curvature or low 
point concentration, and removal of points in low-curvature regions. 

To monitor the accuracy of our calculations, after each timestep we calculate the 
vortex volume and fluid impulse, both invariants of the motion (the mathematical 
definition of these quantities is given later in our discussion). In all of the calculations, 
the maximum change in each invariant, due to numerical error, was of the order of 
0.1 yo. Further, as an independent test of accuracy, we repeated selected calculations 
using half the number of points and relaxing the point insertion criteria by a factor 
of two. The results were visually indistinguishable, indicating that the error was 
indeed kept small. 

The computations presented in this work were performed on a VAX-11/780 
computer equipped with an FPS-164 processor. Typical CPU time for a complete run 
was of the order of 3 h. 

4. The evolution of Hill’s vortex 
4.1. The unperturbed state 

In a frame of reference which moves with the vortex, the flow inside Hill’s vortex 
is specified by the stream function 

where r2 = x2 + u2, and a is the vortex radius (Lamb 1932 art. 165). The corresponding 
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FIQURE 1 .  Streamline pattern of Hill's spherical vortex. The vorticity inside the vortex increases 
linearly in the radial direction, w = Au; the speed of the approaching stream is U = - & A d .  In our 
discussion we assume h < 0 and thus, we refer to A as the front, and to B as the rear stagnation 
point. 

streamline pattern is presented in figure 1. The above stream function yields a 
sinusoidal variation of the tangential velocity on the vortex surface, suggesting that 
the irrotational flow outside the vortex may be taken as a uniform flow past a sphere, 

Continuity of velocity (and hence of pressure) across the vortex surface requires that 

u = -&Aa2. (18) 

Equations (16)'to (18) provide a complete specification of the undisturbed flow. 
In an alternative fashion, one may use (11) to express the velocity as a contour 
integral, where w = ACT, uE = iU, and the contour C,  is a semi-circle along the vortex 
boundary. 

4.2. Linear analysis 

Bliss (1973) formulated the linear problem for small axisymmetric perturbations. His 
analysis was extended by Moffatt & Moore (1978) who gave an approximate solution 
to the system of infinite coupled ordinary differential equations for the motion of the 
vortex boundary. In  a frame of reference moving with the unperturbed vortex speed 
U, the vortex boundary is specified in spherical coordinates as 

r = a(1 +eh(O, t ) ) ,  (19) 

where h is expansible in a series involving Legendre polynomials 

(20) h = E h,#)Pn(,u) = --X (2n+1)An( t )P;( ,u) ,  

with ,u = cos 8. The coefficients A,(t) are calculated in closed form with a maximum 

CO 2 -  

0 15 1 
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error 2%. Emphasis is placed on the initial conditions h,(O) = 0 for n + 2, and 
h,(O) = 1, corresponding to spheroidal perturbations. Considering the behaviour as 
Ut/a 9 1,  while Ut/a < f In (lo/€), the authors showed that for prolate disturbances, 
the vortex detrains a fraction 9 of its volume, in the form of a thin spike growing 
from the rear stagnation point. The disturbance velocity is not strong enough to 
deform the spherical shape of the remaining vortex of reduced radius a( 1-&). A t  
large times, the vortex translates downstream as a slow speed $zU. For oblate 
disturbances, irrotational fluid is entrained into the vortex from the rear stagnation 
point. This results in an increase of the vortex radiui by a factor of $. Moffatt & Moore 
suggested that the entrained fluid reaches the front stagnation point, and then 
circulates within the vortex in a spiral pattern. In this fashion, the vortex reduces 
to a vortex ring which slowly translates upstream at a speed $zU. 

4.3. Nonlinear evolution 
We consider disturbances similar to those used by Moffatt & Moore, equations (19), 
(20), where at the initial instant h,(O) = 1 is the only non-zero perturbation 
coefficient. In addition, we require that the original vortex volume V = $ra3 is 
preserved, where a is the undisturbed vortex radius. The vorticity transport equation 
(13) indicates that for linear vorticity distribution, conservation of volume implies 
conservation of circulation. Thus, preserving the vortex volume guarantees that the 
disturbance flow is irrotational. Our initial conditions are 

r = ay(a+ehz), (21) 

where y is a function of E ,  so that the vortex volume is preserved. expresses the 
deviation from the spherical shape; positive B correspond to prolate, while negative 
B to oblate perturbations. 

We discuss the evolution in terms of the non-dimensional time t* = Ut/a ,  where 
U may be viewed either as the speed of the undisturbed vortex translating in a 
quiescent fluid, or as the speed of a uniform fluid past a steady vortex. 

To start, we consider the evolution of a small amplitude prolate perturbation, 
E = 0.050, illustrated in figure 2. In the initial stage, a certain amount of rotational 
fluid is convected to the rear of the vortex, as shown in figure 2 (b ) .  The front of the 
vortex obtains a nearly spherical shape, in agreement with predictions of linear 
analysis. The fluid accumulated at the rear of the vortex is elongated under the 
influence of the local stagnation point flow and forms a vortex tail, figure 2(c) .  
Meanwhile, due to detrainment of rotational fluid, the main vortex starts translating 
downstream (to the right in a frame of reference that moves with the unperturbed 
vortex speed). As time proceeds, the vortex tail suffers continuous elongation, 
primarily under the influence of the flow induced by the spherical core. The region 
connecting the tail to the main vortex is pinched by the local stagnation point flow 
and its thickness decreases at an exponential rate, figure 2(&). Figure 2(e)  is 
illustrative of the asymptotic behaviour, in which the tail tends to separate from the 
main spherical vortex and to form an independent entity with low circulation. 

To resolve the nature of the asymptotic motion, we examine the change in the size 
of the vortex core during the evolution. For this purpose, we define the radius of the 
core r,, as the maximum displacement in the radial direction, r, = a ( x , )  = max(a), 
where x ,  is defined as the centre of the core. In figure 3 we plot the non-dimensional 
r,* = 5(1 - T , / u ) / E ,  as a function of time t*. At large times, T, tends to an asymptotic 
value indicating that the core is not being depleted of rotational fluid. This 
asymptotic value is accurately predicted by linear analysis to be equal to 
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FIGURE 3. The normalized core radius r,* = 5(1 -rc/a)/e, as a function of time t * ,  for prolate 
perturbations. Linear analysis predicts that at large times r:+i: (a )  +, E = 0.050; ( b )  ., 0.150; 
(c) 0,  0.300. 
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FIGURE 4. The normalized core volume V,* = 5( 1 - Vc/ V) /&,  as a function of time t * ,  for prolate 
perturbations; V is the total vortex volume. Linear analysis predicts that at large times V,*+ 1 : 
(a) +, E = 0.050; (b )  ., 0.150; (c) 0 ,  0.300. 
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5.58 188 0.001 

1.8 206 0.050 

1.2 188 0.150 

6.666667 188 0.300 

FIQURE 5. Advanced stages of vortex for prolate perturbations of different initial amplitude: (a)  
E = 0.001, t* = 5.580; ( b )  E = 0.050, t* = 7.800; (c) E = 0.150, t* = 7.200; (d)  E = 0.300, t* = 6.667. 

(1  -3.) a = 0.990~.  Another measure of the detrainment is the volume of the vortex 
core between the planes x = xF and x = x,+ 2r,, where xF is the front of the vortex. 
Figure 4 shows that V, tends to an asymptotic value verifying that fluid is not 
detrained from the core. This asymptotic value is again closely predicted by linear 
analysis to be equal to V,  = (1 -+) V = 0.970 V, where V is the total vortex volume. 
To examine the shape of the core, we compare the separation between the core centre 
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- 10 0 

FIQURE 6. Dimensionless time T* = UT/a a t  which the vortex tail travels a distance equal to  one 
vortex radius downstream, as a function of the log of the initial amplitude of the disturbance, In ( E ) ;  

the dashed line shows predictions of linear theory. 

and the front stagnation point, xc-xF, to the core radius rc. In  the advanced 
evolution stages these are identical, suggesting a spherical core. 

The evolution of prolate perturbations of larger initial amplitude is similar to that 
described above, although the motion is governed by nonlinear effects from the initial 
stages. This involves accumulation of fluid at the rear stagnation point, and 
formation of a spherical core and adjoining vortex tail. Disturbances of initial 
amplitude larger than 0.300 are of minor physical interest, as they require an irregular 
initial deformation of the vortex boundary. On the other hand, the evolution with 
very small disturbances is adequately described by linear analysis (even at large 
times), and is similar to that presented above. Figure 5 shows typical advanced stages 
in the evolution for amplitudes E = 0.001,0.050,0.150 and 0.300. The corresponding 
behaviour of the core radius rc and core volume V, are shown in figures 3 and 4. These 
figures suggest that the initial amplitude E is an important parameter for the 
evolution, as i t  determines not only the growth rate of the perturbation but also the 
size of the developing vortex tail. As E is increased, a larger fraction of rotational fluid 
detrains from the vortex to form the vortex tail. This is in agreement with linear 
predictions. To assess the effect of E on the growth rate of the disturbance, we consider 
the time T at which the vortex tail reaches a position equal to one vortex radius 
downstream. In figure 6 we plot T* = UT/a as a function of In ( E ) .  The dashed line, 
T* = 1.517 -$ In ( E ) ,  is derived from linear analysis by Moffatt & Moore, and shows 
the behaviour for infinitesimal perturbations.? As expected, larger initial deformations 
induce a stronger disturbance flow with a faster downstream convection of the vortex 
tail. 

t The equation T* = 2.592--f In(€) given by Moffatt 6 Moore is erroneous, owing to error in 
numerical integration. 

12 FLX 168 
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FIGURE 7. For caption see p. 350. 
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FIGURE 7. For caption see p. 350. 
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10.466666 168 -0.050 

1 1.426666 234 -0.050 

FIGURE 7.  Evolution of vortex with small-amplitude oblate perturbation, E = -0.050: (a) t* = 0; 
(b)0.533; (c) 1.413; (a!) 2.853; (e) 3.680; (f) 5.427; (9)  6.027; (h)  7.267; (i) 8.267; (j) 9.267; (k) 10.467; 
(I) 11.427; ( m )  13.110. 

Continuing our discussion, we consider oblate perturbations, beginning with a small 
amplitude disturbance tz = -0.050 (figure 7 ) .  Initially, the disturbed rotational fluid 
near the vortex surface moves towards the front of the vortex, restoring its spherical 
shape in agreement with linear predictions. By conservation of rotational fluid, this 
results in a flattening of the vortex near the rear stagnation point (figure 7 b ) .  This 
is followed by convection of irrotational fluid into the vortex causing an expansion 
of the vortex (figure 7c). The entrained fluid moves along the axis of symmetry, and 
approaches close to the front vortex boundary (figure 7 d ) .  In this fashion, the 
spherical vortex reduces to  a vortex ring. The closed streamlines in the interior of 
the vortex cause the entrained irrotational fluid to circulate along the vortex contour, 
bounded by an infinitesimal thin spherical filament of rotational fluid, figure 7 ( e ) .  This 
completes the first stage of the evolution. I n  later stages, the vorticity in the spherical 
filament is eliminated for computational efficiency. As will be discussed later, this 
simplification did not affect the accuracy of our results. Thus, while deleting this 
vorticity decreased the flow circulation impulse and energy by approximately 0.15 yo, 
it substantially reduced the number of marker points by 28%. Similar contour 
simplifications will be employed in the rest of the calculations presented in this 
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FIQURE 8. The shape of the vortex ring developed from a small amplitude oblate perturbation, 
E = -0.050: -.-, t* = 4.507; ---, t* = 9.266; -, t* = 13.110. 

section. Continuing with the evolution, we note that the vortex ring shown in figure 
7 (e )  is nearly symmetric with respect to the vertical plane passing through its centre. 
Further, by comparing figures 7 ( e ) ,  (f) we conclude that the vortex ring evolves at 
a slow rate. Thus, we may identify the further evolution of the vortex with the 
evolution of a perturbed, steady and symmetric vortex ring (the structure and 
properties of such rings are discussed in the next section). Figure 7 ( f )  shows that 
the ‘ excess ’ rotational fluid responsible for the asymmetry of the ring takes the form 
of a wave on the surface of the vortex, which is convected by the outer flow to the 
rear stagnation point. A portion of this ‘excess’ fluid is convected downstream by 
the outer flow in the form of a thin vortex tail (figure 7 9 ) .  At the same time, a thin 
layer of irrotational fluid is entrained into the vortex just above the vortex tail. At 
later times, the tail is stretched by the external flow and loses its dynamic significance 
(figure 7 h ,  i). On the other hand, the entrained fluid reaches the front of the vortex 
and circulates along the ring boundary forming a thin, axisymmetric vortex filament. 
If the initial spherical vortex filament had not been deleted (figure 7 e ) ,  it would form 
a continuation of this filament in a spiral pattern. In the end of this evolution period 
(figure 7i ) ,  the vortex is reduced into a system of two compact structures; the 
primary, nearly symmetric vortex ring and a small secondary toroidal vortex at the 
front of the vortex ring. The two structures are connected with the above thin vortex 
filament. Recalling that the circulation of each structure is proportional to its volume, 
it is easy to see that the circulation of the secondary vortex is much smaller than 
that of the ring. For the pattern shown in figure 7 ( i ) ,  the circulation, impulse and 
energy of the secondary vortex account for approximately 1% of the total flow 
properties. This indicates that the secondary vortex is of minor dynamic significance 
and thus, it can be deleted for computational efficiency. It is important to note that 
if the secondary vortex is not deleted, it  will be stretched by the elongational flow 
at the front stagnation point and its vorticity will be convected into the main vortex 
ring. Thus, its significance will be reduced even more during the evolution. Continuing 
with the evolution we note the similarity between the profiles shown in figures 7 ( i ) ,  
( e ) .  As a result of this similarity, the vortex repeats the above evolution cycle, forming 
a new vortex tail and entraining a new thin filament of irrotational fluid around the 
primary vortex ring (compare figures 7 j-m to 7 e i ) .  In  the end of this cycle, the vortex 
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FIGURE 9. For caption see p. 354. 
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FIGURE 9. For caption see p. 354. 
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8.0 120 -0.150 

12.0 I26 -0.150 

FIGURE 9. Evolution of vortex with an  oblate perturbation of initial amplitude E = -0.150: 
(a) t* = 0; (b )  0.400; (c) 1.200; ( d )  2.533; ( e )  3.133; (f) 4.333; (9)  4.733; (h)  5.533; (i) 6.400; 
(j) 6.933; (k) 8.000; ( 1 )  10.267; (m) 12.000. 

ring obtains a shape similar to that described previously in figures 7(e) ,  (k). To 
facilitate the comparison, we superimpose the ring boundary a t  three different times 
in figure 8. The notable similarity between the patterns in this figure suggests that 
once again, the above evolution cycle will be repeated. In  this fashion, the flow will 
tend to an asymptotic state in which the entrained irrotational fluid will form 
successive thin vortex filaments around a nearly steady vortex ring. 

The evolution for small amplitude oblate perturbation discussed above is consistent 
with linear analysis. To investigate the effect of finite amplitude, we consider the 
motion for e = -0.150, illustrated in figure 9. This is similar to that for e = -0.050, 
involving the development of a nearly steady vortex ring (figure gee), whose slow 
evolution leads to the formation of a thin vortex filament in a spiral pattern (figure 
9f-i). The contour surgery performed a t  the stage shown in figure 9 e  resulted in 
approximately 1 yo reduction in the flow properties. The ring diameter is now larger 
(compare figures 7 e ,  9 e )  and thus, the cross-section of the vortex is smaller, owing 
to conservation of volume. As a difference from the E = -0.050 evolution, we observe 
that the ‘excess’ fluid at the rear stagnation point does not form a vortex tail (figure 
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FIQURE 10. Evolution of the vortex with an oblate perturbation of initial amplitude 6 = -0.300: 
(a) t* = 0; (a) 0.213; (e) 0.640; (d )  1.280; (e) 2.560; (f) 3.360; (9) 4.067; (h)  5.153; (i) 5.873; 
(j) 7.087; (k) 8.393. 

9 f i ) ;  instead, it is convected into the interior of the vortex towards the front 
stagnation point. In the end of this evolution period (figure 9i), the vortex is reduced 
into a nearly symmetric, steady vortex ring and a secondary toroidal vortex, familiar 
from the evolution for E = -0.050 (figure 7i). The stretching of the secondary vortex 
discussed previously, becomes clear by comparing figures 9 (i), (j). Simplification of 
the vortex contour at the stage shown in figure 9(j )  (causing approximately 2.5% 
reduction in the flow properties) was necessary for the continuation of the calculations. 
In the following evolution we observe the formation of a new vortex filament around 
the front of the vortex ring (figures 9k, 1) .  This periodic behaviour suggests that as 
in the E = -0.050 evolution, the flow will tend to an asymptotic state, characterized 
by the continuous formation of spiral vortex filaments around an almost steady 
vortex ring. 

Behaviour similar to that described above is observed for larger initial amplitudes. 
As an example, in figure 10, we illustrate the evolution for E = -0.300. In  this case, 
contour simplification resulted in a final 3.5% reduction in the flow properties. 
Perturbations of still larger initial amplitude deform the vortex in an irregular fashion 
and thus, they are of limited physical interest. 

In summary, we see that the general features of the evolution are in qualitative 
agreement with linear analysis for both oblate and prolate perturbations. This 
agreement extends even to finite amplitude perturbations. An important new result 
of our nonlinear calculations is that in all cases, the flow tends to an asymptotic state. 
Prolate perturbations lead to a translating vortex core with an elongated vortex tail, 
while oblate perturbations lead to a vortex ring with an entrained spiral of 
irrotational fluid. These asymptotic patterns appear to be stable to axisymmetric 
perturbations, suggesting that azimuthal perturbations are essential for further 
evolution. 

Concluding this section, we would like to discuss the effect of contour simplification 
(‘contour surgery’), on the evolution for oblate perturbations. To address this issue, 
we performed calculations using different simplification procedures. For instance, we 
truncated the developed vortex filaments at different stages in the evolution. We 
found that although the details of the truncation had some effect on the local 
behaviour around the truncation region, the overall evolution of the vortex remained 
unchanged. Clearly, thin vortex filaments with bounded vorticity are of minor 
dynamic significance. Note ‘that Pozrikidis & Higdon (1985) arrived at similar 
conclusions for two-dimensional vortex flows. Thus, contour simplification is justified 
as a tool for analysing the main features of the flow dynamics. 
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5. Discussion 
5.1. A family of steady vortex rings 

In the preceding section we showed that in its asymptotic state, an oblate vortex 
reduces to a nearly symmetric vortex ring. The properties of this ring, including 
vortex volume V, circulation C, kinetic energy T and impulse P, must be equal to 
those of the initial oblate vortex, as these are invariants of vortex motion. Thus, we 
may characterize an asymptotic ring by the non-dimensional impulse or energy of 
the initial oblate vortex, P* = P/pAa5, T* = T/pAaa7, where a and A are defined 
implicitly in terms of the volume V = $m3 and the circulation C = AV. Under this 
non-dimensionalization, P* and T* are functions of the perturbation parameter E ,  

and the asymptotic rings may be identified by any of the parameters B ,  P* and T*. 
Because the asymptotic rings arising from oblate vortices are almost steady, it is 

of interest to compare them to steady vortex rings described by previous authors. 
Norbury (1973) developed a numerical method for calculating steady vortex rings 
with linear vorticity distribution. He described the contour of a ring in the form of 
a Fourier series 

where 

z = Lf(t) sint, 
Q = L(l+f(t) cost), 

03 

f(t) = X a,(a) cos nt, 
0 

L is the mean vortex radius, and a is a non-dimensional papameter expressing the 
ring area over a cross-section, A = nLBae. When a+2/2  the ring becomes Hill’s 
spherical vortex, while when a+O it becomes a line ring of very small, nearly circular 
cross-section. It is convenient to scale the properties of Norbury’s rings using the 
above non-dimensionalization (i.e. keeping vortex volume and circulation constant). 
In this fashion, we may identify a steady ring by any of the parameters a, P* 
and T*. 

To compare Norbury’s steady rings to the asymptotic rings arising from oblate 
vortices, we plot the kinetic energy T* as a function of the impulse P* for both cases 
(figure 11) (the energy of the asymptotic rings was evaluated as a contour integral 
as explained in the Appendix). The circled points in figure 11 show the energy and 
impulse of steady rings, as given in table 2 by Norbury (1973). It is clear that these 
points lie below the dashed line for the unsteady oblate vortices. However, this is 
not allowed by energetic considerations; Benjamin (1975) showed that for given 
volume, circulation and impulse, an axisymmetric vortex with linear vorticity 
distribution has maximum energy when it is steady.t Given the accuracy of the curve 
for oblate vortices, we conclude that the impulse-energy data of Norbury is not 
accurate enough for our purposes. To obtain a better approximation of the T*(P*) 
curve for steady rings, we use the relationship dT*/dP* = W* (Norbury 1973), where 
W* is the non-dimensional vortex speed, W* = W/AaZ, and the differential is taken 
at constant volume and circulation, i.e. at constant a and A. Integrating this equation, 
using the data for W* provided with sufficient accuracy by Norbury, yields the solid 
curve in figure 11 which correctly lies above and very close to the curve for oblate 
vortices. Several points on the T*(P*) curves for oblate vortices and vortex rings are 
given in table 1. The fact that the two curves are very close to each other indicates 
that the development of a nearly steady vortex ring from an oblate vortex is possible 

t This theorem includes vortex rings extending to the axis of symmetly, i.e. perturbed Hill’s 
vortices. 
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FIQTJRE 12. Shape parameter a for steady vortex rings, and perturbation parameter E for oblate 
vortices as functions of the fluid impulse P*. 
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FIGURE 13. Steady vortex rings (solid contours) of impulse and energy approximately the same 
as those for asymptotic rings (dashed contours) arising from oblate vortices: (a )  B = -0.050, 
t* = 9.267; ( b )  E = -0.150, t* = 3.133; (c) E = -0.300, t* = 2.747. 

(315/8~)  T* 
( 1 5 / 4 ~ )  P* E Oblate vortices Steady rings 

1 .o 0.0 1 .o 1 .o 
1.051 - 0.050 1.072 1.072 
1.157 -0.150 1.219 1.223 
1.320 -0.300 1.448 1.459 
1.425 -0.400 1.593 1.612 
1.524 -0.500 1.731 1.757 

TABLE 1 .  Impulse P*, and energy T* data for oblate vortices and steady vortex rings. 

within the constraints imposed by flow invariants. To establish a correspondence 
between the initial oblate vortices and the steady rings, we plot the parameters a 
and e,  as functions of P*, figure 12. This yields a unique relationship between a and 
e.  As an example, in figure 13 (solid lines) we present three steady vortex rings with 
values of a corresponding to B = - 0.050, - 0.150 and - 0.300. Superimposed on these 
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rings are the asymptotic rings arising from the corresponding oblate perturbations 
(dashed lines). One can see that the asymptotic rings may be considered as perturbed 
states of the steady rings, in agreement with our previous observations. 

5.2. Translation of the vortex 
In the previous sections we discussed the evolution of disturbances on Hill’s vortex, 
considering primarily the qualitative features of the motion. In this section we 
examine how the growth of the perturbation affects the speed of the vortex. It is 
convenient to specify the position of the vortex using the vorticity centroid (x,, u,), 
defined by the equations (Lamb 1932 art. 162), 

P 
I oa2 d a  dx 

j o u t  da dx 

xc = joa’dadx 
= P joa2x du dx, (25 1 

where P = 7 ~ p j o a ~  dA and C = So dA are the fluid impulse and circulation, both 
invariants of the motion. Thus, a, remains constant, while x, changes during the 
motion. Assuming a linear vorticity distribution o = Aa,  we may express C, P and 
x, as contour integrals, 

C = -Asfcva29.idl, 

P = zpA fcv a3xy ? dl, 

x, = npA fcv u3x25”. ? d1/2P, 

where i and] are the unit vectors in the x- and a-directions. The vortex speed may 
be expressed as U, = dx,/dt, and can be evaluated as a contour integral in the form 

u , =-- =;A fcv u3x u. A dl, 

where ii is the unit normal vector to the contour, pointing out of the vortex. 
Figure 14 illustrates the behaviour of the non-dimensional vorticity centroid 

x,* = x,/a and the vortex speed U,* = dx,*/dt* for prolate perturbations of different 
initial amplitude, in a frame of reference which moves with the unperturbed vortex 
speed U .  As the vortex tail develops and vorticity detrains from the core, the vortex 
moves downstream at an increasing rate. In a stationary frame of reference, this 
would imply a deceleration of the translating vortex. Note however the short initial 
period of upstream translation for the small amplitude perturbation, B = 0.050. A t  
large times, as the flow tends to an asymptotic state, the vortex speed tends to an 
asymptotic value which is closely predicted by linear analysis to be equal to +U.  
Asymptotic vortex speeds as predicted by linear analysis and numerical calculations 
are compared in table 2. We conclude that prolate perturbations initiate a slow 
translation of a steady vortex, or equivalently, a deceleration of a translating vortex. 
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FIGURE 14. Evolution of (a) the vorticity centroid x,' = x , / a  and ( b )  the vortex speed U,' = dx,'/dt* 
for prolate perturbations. The straight lines show predictions of linear analysis: +, E = 0.050; ., 
0.150; 0 ,  0.300. 

Proceeding, we examing the behaviour of the vorticity centroid for oblate 
perturbations, illustrated in figures 15 and 16. The discontinuities in the curves for 
x,* in figure 15 indicate contour simplifications. Note that although these simplifications 
affect the position of the centroid x,*, they have little effect on the behaviour of the 
vortex speed U,*, figure 16. This again indicates that contour simplification does not 
alter the nature of the evolution. Figure 15 shows that initially, owing to the 
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FIGURE 15. Evolution of the vorticity centroid xr for oblate perturbations. The discontinuities 
indicate contour simplification: ( i )  e = -0.050; (ii) -0.150; ( i i i )  -0.300. 

E Linear theory Numerical results 

0.050 0.020 0.020 
0.150 0.060 0.065 
0.300 0.120 0.134 

TABLE 2. Asymptotic vortex speed U: for prolate perturbations as predicted by linear theory 
and numerical calculations. 

perturbation, the vortex starts translating downstream, at a decreasing rate. I n  this 
initial period, U,* is positive (figure 16). However, as irrotational fluid is entrained 
into the vortex causing an expansion, the vortex starts translating upstream at an 
increasing speed, and U,* becomes negative. A maximum negative speed is attained 
approximately as the entrained fluid reaches the front of the vortex. This is a function 
of E and is in close agreement with linear predictions for the small perturbations 
E = -0.050 and -0.150, U,* = &U (figure 16). Interesting behaviour arises there- 
after; as the entrained irrotational fluid starts rotating along the vortex boundary, 
the vortex speed increases and finally, becomes positive. Thus, the generation of a 
vortex filament is accompanied with an oscillation in the vortex speed. At later times, 
we find that this oscillation is repeated, owing to the formation of successive vortex 
filaments around the vortex ring. It is worth noting that the mean value of the 
oscillations is close to the speed of the corresponding steady vortex rings, Norbury 
(1973). It should be stressed that this oscillatory behaviour is for a frame of reference 
translating with the unperturbed vortex speed U .  I n  a stationary frame of rcfercnce. 
the oscillations yield small fluctuations in the vortex speed, or the order 5 O 0 .  
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6. Concluding remarks 
Our calculations indicate the spontaneous development of thin filaments of 

rotational fluid which appear to demonstrate a singular behaviour. Specifically, they 
appear to come in contact with each other or with other vortex regions (figures 7e,  i, 
9 e ,  j and 10e, h, i), and to break, separating from the original vortex (figure 5 ) .  
Most probably, this behaviour is a numerical artifact (owing to the discrete numerical 
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FIQURE 16. Evolution of the vortex speed U,* for oblate perturbations. The lower limit of the y-axis 
corresponds to predictions of linear theory. The horizontal lines show the vortex speed of the 
corresponding steady vortex rings: (a) E = -0.050; (b)  -0.150; (c) -0.300. 

representation), which does not affect the global evolution; the appearance of a 
singularity on a thin vortex filament with bounded vorticity is probably dynamically 
unimportant. Note that similar behaviour is known to occur in two-dimensional 
vortex flows, as suggested by the calculations of Overman & Zabusky 1982, and 
Pozrikidis & Higdon 1985. In  the two-dimensional case, the classical results on global 
existence to the Euler equations show rigorously that two Lagrangian points cannot 
come together in a finite time and thus, vortex filaments cannot touch or break. It 
seems likely that similar principles apply for axisymmetric flows, although a 
theoretical analysis is in order. 

The literature contains a large number of experimental studies on the evolution 
of vortex rings (Maxworthy 1972, 1974, 1977). These rings are usually produced in 
the laboratory by impulsively pushing a fluid through an orifice or a piston and thus, 
they are generated by means of roll-up of vortex sheets. The vorticity distribution 
inside these rings is not linear, but shows a distinct peak along a well-defined vortex 
core. Furthermore, the evolution of these rings is dominated by viscous effects and 
three-dimensional instabilities. Thus, unfortunately, a comparison between these 
studies and our results is not appropriate. 

In conclusion, we would like to stress that the contour dynamics formulation, 
developed in $2, offers an efficient method for analysing a variety of important flows 
at high Reynolds number. Calculation of steady wakes behind axisymmetric objects 
(Saffman 1981 ; Saffman & Tanveer 1984), and analysis of the interaction of vortex 
rings of finite cross-section (Yamada & Matsui 1977), constitute two interesting 
applications. An extension of the method to account for periodic flows will provide 
a useful tool for studying the nonlinear instability of circular jets. 
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Appendix 
In this appendix we derive an expression for the kinetic energy T of the flow 

induced by a closed, axisymmetric vortex with linear vorticity distribution o = ha, 
as an integral over the vortex contour. First, following Batchelor (1967 $7.2), we write 

T = (U2+v2)dV = ~p w$dudx = xph $ududx, (A 1) s J A v  JA" 

where A, is the cross-section of the vortex on a semi-inbite plane bounded by the 
axis of symmetry. To convert the area into a line integral we use Green's theorem 

c c 

J [$Vzf-fVz$] d r d z  = J [$Vf-fV$]*RdZ, 
Av c v  

where f is a twice differentiable function, V2 = a2/i3x2 + aa/au2, C, denotes the vortex 
contour and f i  is the unit normal to C, pointing out of the vortex. Choosing f = &+ 
and recalling that V2$ = - w a +  (a$/aa)/a (equation (2)), we substitute into (A 2), 
integrate by parts in the left-hand side and use the divergence theorem to write 

In this expression, ?is the unit tangent to C,, j i s  the unit vector in the radial direction 
and the integral is evaluated in the counterclockwise sense. 

Note that the stream function may be evaluated from the velocity using the 
relationship 

with reference value $ = 0 along the axis of symmetry, and the velocity may be 
evaluated as a contour integral, as explained in 52. 
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